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Standard computation of size and credibility of a Bayesian credible region for certifying any point
estimator of an unknown parameter (such as a quantum state, channel, phase, etc.) requires selecting points
that are in the region from a finite parameter-space sample, which is infeasible for a large dataset or
dimension as the region would then be extremely small. We solve this problem by introducing the in-region
sampling theory to compute both region qualities just by sampling appropriate functions over the region
itself using any Monte Carlo sampling method. We take in-region sampling to the next level by
understanding the credible-region capacity (an alternative description for the region content to size) as the
average lp-norm distance ðp > 0Þ between a random region point and the estimator, and present analytical
formulas for p ¼ 2 to estimate both the capacity and credibility for any dimension and a sufficiently large
dataset without Monte Carlo sampling, thereby providing a quick alternative to Bayesian certification. All
results are discussed in the context of quantum-state tomography.
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Introduction.—Parameter reconstruction from datasets is
a preliminary task in the studyof natural sciences. In quantum
theory, proper reconstruction of quantum states [1–5],
quantum channels [6–9], interferometric phases [10,11],
etc., is the root to successful executions of all quantum-
information protocols [12–15]. A parameter estimator must
be accompanied by an appropriate error certification to
ascertain its reliability for future physical predictions.
Bootstrapping or resampling [16,17], which generates mock
data from collected ones to obtain “error bars,” can result in
highly overoptimistic error-bar lengths [18] that do not
accurately characterize the estimator. From the principles
of hypothesis testing, one can instead construct Bayesian
credible regions [19,20] based on the collected data. These
credible regions are distinct from the frequentists’ confidence
regions [21–23], which are constructed from the complete
(often assumed) distribution of estimators that includes all
unobserved ones in the experiment.
A credible region R, which is a Bayesian error region

constructed from experimentally observed data D, requires
the specification of its size and credibility, which is the
probability that the true parameter is inside R. It is well
known from Ref. [19] that the latter is readily derived so
long as the functional behavior of the former with the shape
of R is known. As the size of R is defined as the volume
fraction of the full parameter space R0, its computation
conventionally requires one to first obtain a large sample of
points in R0, and later discard (usually very many) points
that are outsideR. Acquiring a sufficiently large sample of
R0 for a subsequently accurate sample filtering is doable
with a number of Monte Carlo (MC) methods [24,25], most

notably the Hamiltonian Markov-chain MC method, pro-
vided that R is not small. In practice, however, when data
sample-size N becomes even moderately large, the region
R (of size ∼N−d=2 [26] for a d-dimensional parameter) is
too tiny for any MC-filtering sampling to be practically
feasible. In Refs. [26,27], closed-form approximations are
given to estimate both region qualities for large N without
MC filtering, with the premise that the volume of R0

is known.
In this Letter, we develop an in-region sampling theory to

compute the size and credibility with neither MC filtering
from, nor any geometrical knowledge (such as the volume)
about R0. We first prove the central lemma, which states
that both region qualities are computable from the average
of log-likelihood over R. We next discuss the hit-and-run
MC algorithm [28–31] as one of the many numerical tools
to perform direct region-average computation. As a stra-
tegic bonus, we make use of the region-average concept in
in-region sampling to define the region capacity of R
induced by an lp norm (p > 0) between two points in R.
This would allow us to derive fully operational asymptotic
approximation formulas for p ¼ 2 (squared-error metric) to
carry out rapid error certifications without numerical
computations. All results are demonstrated and verified
for multi-qubit tomography.
Error-region size and credibility.—For a given informa-

tionally complete (IC) dataset D, we would like to
reconstruct the unknown d-dimensional parameter r
(vectorial in general) that fully characterizes some physical
system. We shall assume that the parameter space
R0 (of quantum states, channels, Cartesian-product of
independent quantities, etc.) for the physical system of
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interest is convex, and take the unique estimator r̂ ¼ r̂ML to
be the maximum-likelihood (ML) estimator [3,32,33], that
is the estimator that maximizes the likelihood L ¼ LðDjr0Þ.
It was formally shown in Ref. [19] that the optimal
Bayesian credible region (CR) R for r̂ML has an isolikeli-
hood boundary ∂R—a boundary of constant likelihood—
and every interior point possessing a likelihood L ≥ λLmax
(see Fig. 1). Its size and credibility are

Sλ ≡
Z
Rλ

ðdr0Þ ¼
Z
R0

ðdr0ÞηðL − λLmaxÞ;

Cλ ≡
Z
Rλ

ðdr0ÞL=LðDÞ ¼
Z
R0

ðdr0ÞηðL − λLmaxÞL=LðDÞ;

ð1Þ

where the volume measure ðdrÞ incorporates some pre-
scribed prior distribution pðrÞ, η is the Heaviside function,
LðDÞ ¼ R

R0
ðdr0ÞLðDjr0Þ, and 0 ≤ λ ≤ 1 characterizes

the shape and size of Rλ, so that Rλ¼0 ¼ R0 and
Rλ¼1 ¼ fr̂MLg. Hence, Sλ measures the total prior content
of Rλ that monotonically decreases with increasing λ, and
Cλ its posterior content that expresses the probability that
r ∈ Rλ. Both Cλ¼λ0 (prechosen to be 0.95 say) and the
corresponding Sλ¼λ0 are reported together with r̂ML. The
relation

Cλ ¼
�
λSλ þ

Z
1

λ
dλ0Sλ0

�
=

Z
1

0

dλ0Sλ0 ð2Þ

means that a single r0 integration for Sλ is sufficient to
acquire Cλ [19]. In realistic experiments, where the desired
number of data copies N < ∞ is usually large (which we
assume unless otherwise stated), the likelihood L becomes
a Gaussian function owing to the central limit theorem and
peaks strongly around r̂ML. In this case, Sλ becomes very
small even for small λ or large Cλ (the desired situation).
Therefore, MC filtering produces almost no yield as such a
finite sample would surely miss Rλ for a reasonably
high Cλ.
We inform that one systematic guide to report error

regions is to invoke the elegant notion of evidence, which
leads to the so-called plausible region [20,26,27,34,35] for
D, in which all points have posterior probabilities larger
than or equal to their prior probabilities—a physical
measure of statistical significance. Then Cλ should not
exceed the credibility of this plausible region in order for
the CR to contain only plausible points (refer to our
companion article [36] for details).
In-region sampling theory.—We shall now propose a

way to compute both Sλ and Cλ without MC filtering. The
physical intuition behind our theory is to realize that if one
inspects the average of some quantity qλ over the region
Rλ [formally denoted by q̄λRλ ¼ R

Rλ
ðdr0Þqλðr0Þ=

R
Rλ
ðdr0Þ],

then its rate of change with λ actually encodes information

about the behavior of Sλ with λ. A shrinkage of Rλ, for
example, translates to an exclusion of some qλ values from
the region average. More precisely, this leads to the
Region-average computation (RAC) lemma: For

any prior ðdr0Þ and N, the prior content Sλ (up to a
multiplicative factor), and hence the credibility Cλ,
are all inferable from the R-average quantity
uλ ¼ logLðDjr0Þ − logðλLmaxÞRλ .
We prove this lemma by taking the first-order deri-

vative of uλSλ in λ. Upon noting that ∂Sλ=∂λ ¼R
R0
ðdr0ÞδðL − λLmaxÞ, we end up with the following

first-order differential equation

∂yλ
∂λ ¼ −

yλ
λuλ

ð3Þ

that characterizes the full evolution of yλ ¼ uλSλ given the
boundary value Sλ¼0 ¼ 1. Equation (3) can be solved easily
by iterating yλjþ1

¼ yλj − yλj=ðλjuλjÞ following Euler’s
method [37], so that Cλ can thereafter be computed using
Eq. (2). This closes our constructive proof of the
RAC lemma.
For any prior distribution pðrÞ, there exist many MC

[24,38] schemes to compute uλ, many of which use
Markov-chain algorithms. Hit-and-run sampling [28–31]
is one such extensively-studied scheme. The mechanism
behind hit-and-run starts with the construction of a simple
finite convex set B ⊇ Rλ. For N ≫ 1 and some λ, two
general cases exist as shown in Fig. 1. In case A, we
define B as the hyperellipsoid Eλ centered at rc ¼ r̂ML that
profiles the Gaussian L whenever r̂ML is an interior point.
In case B, where r̂ML is a boundary point on ∂R0, we
set B as the (truncated) hyperellipsoid E0

λ centered at
rc ¼ r̂ML þ F−1

MLgML, where FML is the Fisher information
evaluated at r̂ML and gML ¼ ∂ logL=∂r0jr0¼r̂ML

. Next, start-
ing from a reference point inRλ, say the ML estimator r̂ML,

FIG. 1. Since any relevant λ value that gives a reasonably large
credibilityCλ < 1 typically yields a small CRRλ, there exist only
two general cases. Case A refers to the situation where r̂ML is an
interior point of R0, and case B refers to that where r̂ML is on the
boundary ∂R ∩ ∂R0. It is easy to determine which is the case for
r̂ML. In quantum-state tomography, for instance, this would
correspond to checking if the state estimator is rank deficient.
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a finite line segment, with end points on ∂B, passing
through this point is generated and a random point is picked
repeatedly along this line until it lies in Rλ, thereafter
becoming the next reference through which a new finite
line segment is generated to find the next point in Rλ. The
final Rλ sample is then used to compute any Rλ-average
quantity. The key point is that a hyperellipsoidal B for hit-
and-run is constructed based on the central limit theorem,
where the N ≫ 1 condition guarantees that the physical
region is asymptotically contained in B. To play it safe, a
good idea would be to choose a hyperellipsoid that is, say,
twice the size of the supposed one given by the theorem.
Beginning with k ¼ 1 and rref ¼ r̂ML of N ≫ 1, the

accelerated version of hit-and-run [28,29,31] for any given
prior distribution pðrÞ runs as follows: 1. Generate a
random line segment characterized by y ¼ rref þ μev,
where ev ¼ v=jvj and v follows the standard Gaussian
distribution (mean 0 and variance 1 for each column
entry). Its end points are parametrized by μ� ¼
½−b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − aðc− 1Þ

p
�=a, where Δ ¼ rref − rc, a ¼

eT
vAev, b ¼ ΔTAev, c ¼ ΔTAΔ, A ¼ FML=ð−2 log λ0Þ,

2 logðλ=λ0Þ ¼ gT
MLF

−1
MLgML [gML ¼ 0 and λ0 ¼ λ for case

A]. 2. Define β1 ≡ μmin ¼ minfμþ; μ−g and β2 ≡ μmax ¼
maxfμþ; μ−g. 3. Pick a random number β1 ≤ β ≤ β2
according to the marginal probability distribution pðrref þ
βevÞ=

R
dβ0pðrref þ β0evÞ truncated in the interval [β1, β2]

and obtain rtest ¼ rref þ βev. 4. Determine whether
rtest ∈ Rλ. If so, define rref ¼ rtest, raise k by 1, and go
to step 1. If not, set β1 ¼ β if β < 0 or β2 ¼ β if β > 0, and
repeat steps 3 and 4. Sampling terminates when k > Ksmp

for a prechosen Ksmp.
We emphasize that the Gaussian approximation serves

only as an efficient guide to contain the sampling space. An
additional criterion that logL > logðλLmaxÞmay be used to
further ensure that all sampled points truly lie in Rλ,
although this is almost always the case for N ≫ 1. One
main technical issue for Markov-chain schemes is that the
convergence rate is strongly dependent on the starting point
(finite sample-point correlation). It is well known, however,
that hit-and-run converges fast to pðrÞ (with essentially
polynomial complexity) so long as it starts from any
interior point. As an example in 4-qubit tomography, such
an interior point can be generated in about 10 sec per λ with
N > 2 × 106 and 4096 measurement outcomes using
accelerated projected gradient method [39] to minimize
the function ½1 − ðx − rcÞ·A·ðx − rcÞ�2 32 times (see, for
instance, Refs. [30,40] and our companion article [36] for
more technical discussions).
Region capacity.—The region-average methodology

used to feasibly compute Sλ (and Cλ) invites more
options to gauge the capacity of R. Instead of measuring
prior contents, we may check how close is a randomly
chosen point in R from r̂ML on average. Formally, the R
average

SD;λ ≡Dðr0; r̂MLÞRλ ¼
Z
Rλ

ðdr0ÞDðr0; r̂MLÞ=
Z
Rλ

ðdr0Þ ð4Þ

for the capacity of Rλ now depends additionally on the
metric Dðr0; r̂MLÞ one chooses to measure this average
distance.
One can argue that if the metric is an lp norm of p > 0,

SD;λ monotonically decreases with λ when N ≫ 1 for
an appropriate ðdr0Þ. To see this we begin with
D≡Dpðr0; r̂MLÞ ¼ ðPj jr0j − r̂ML;jjpÞ1=p. According to
Fig. 2, after the substitution r00 ¼ r0 − r̂ML, we have for
the more complicated case B,

SDp;λ →

R ðdr00ÞDpη½1 − r00TFMLr00=ð−2 log λÞ�
Q

jηðwT
jr

00ÞR ðdr00Þη½1 − r00TFMLr00=ð−2 log λÞ�
Q

jηðwT
jr

00Þ
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 log λ

p
½if ðdαr00Þ ¼ gðαÞðdr00Þ�: ð5Þ

The same conclusion for case A follows by definition, and
remains unchanged also forDpðr0; r̂MLÞ ¼

P
j jr0j − r̂ML;jjp

since SDp;λ ∼ ð− log λÞp=2 is also monotonic in λ. These
imply that SDp;λ induced by any lp norm behaves as a
proper capacity measure in the limit N ≫ 1 under a
sufficient class of priors that includes the uniform primitive
prior. The new practice for Bayesian CR certification is
then to report the three-tuple ðr̂ML; Cλ0ð¼ 0.95 sayÞ; SDp;λ0Þ
for some p > 0.
Analytical error certification with region capacity.—It

turns out that the approximated extensions of all
R
R0

integrals to the whole r0 space free allR-average quantities
from any geometrical dependence on R0, unlike Sλ that
asymptotically depends onR0’s volume [26]. We may then
use this observation to acquire asymptotic formulas for
SDp;λ and uλ to perform approximate analytical error
certifications. To this end, we regard S2 ≡ SD2

induced
by the squared l2 norm (p ¼ 2), D≡ jr0 − r̂MLj2, as the
prototypical metric-induced capacity measure for Rλ. Let
us first discuss the case in which r̂ML is an interior point of

(b)(a)

FIG. 2. Barring unforeseen pathological examples, we shall
assume that the R0 for any physical system possesses a
boundary ∂R0 that is either (a) a smooth surface, or (b) has
corners and edges. For the latter, a corner at which an ML
estimator might reside can be well approximated by multiple
hyperplanes if N ≫ 1.
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Rλ (case A). Since Rλ ¼ Eλ, finding S2 becomes the
business of doing a hyperellipsoidal average of D. This
gets us to

S2A;λ¼TrfF−1
MLg

ð− logλÞ
d=2þ1

; uA;λ¼−
2

dþ2
logλ: ð6Þ

The logarithmic divergences in λ, a derivation byproduct
from Gaussian approximation of L and relaxation of ∂R0,
pose no ill consequence so long as N is sufficiently large
such that Rλ ⊂ R0 for all λ values that give desirably
large Cλ < 1.
The situation becomes more complicated for case B,

which demands geometrical knowledge about ∂R0 for an
exact calculation of S2 (see Fig. 3). This tempts us to use a
first-order approximation by expanding the likelihood L
about r̂c to a Gaussian function of hyperellipsoidal-E0

λ
profile centered at rc, and next introducing a hyperplane
containing r̂ML that is tangent to its isoGaussian (constant-
Gaussian-value) contour. S2 is then a hyperellipsoidal-
cap (formed by the hyperplane and the hyperellipsoid
from the Gaussian expansion of L) average. We refer
the reader to Sec. VII of our companion article [36] for all
related technical calculations, and simply state the final
formulas:

S2B;λ ¼ 2TrfMg=N d;l;1;

uB;λ ¼
�
− log λ0 þ TrfgMLmT − FMLMg=N d;l;1

�

× logðλLmaxÞ= logðλ0LmaxÞ; ð7Þ

involving Vd ¼ πd=2=ðd=2Þ!, l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðλ=λ0Þ=ð− log λ0Þp

,
N d;l;x ¼ VdIð1−lÞ=2ððdþ xÞ=2; ðdþ xÞ=2Þ depending on
the incomplete beta function I·ð·; ·Þ, and

m ¼
�
−

Vd−1

lðdþ 1Þ ð1 − l2Þðdþ1Þ=2 þN d;l;1

�
F−1
MLgML;

M ¼ − log λ0

dþ 2
N d;l;3F−1

ML þ
1

2
mgT

MLF
−1
ML: ð8Þ

It is easy to see that Eqs. (7) and (8) include case A by
recognizing that the “effective λ” (λ0) approaches λ
(gML ¼ 0), so that l → 0 gives N d;0;x ¼ Vd and
M ¼ ð− log λÞF−1

ML=ðdþ 2Þ.
Discussions for quantum-state tomography.—All results

presented thus far apply to arbitrary physical systems. Here,
we specifically investigate quantum-state tomography,
thereby endowing explicit forms to all important quantities
that are pertinent to Bayesian CR error certification.
For an unknown quantum state ρ of Hilbert-space

dimension D, every data-copy measurement in a tomog-
raphy experiment is usually mutually independent, so that
the log-likelihood logL ¼ P

M
j¼1 nj logpj catalogs the

relative frequency data
P

M
j¼1 nj ¼ N of allM measurement

outcomes Πj ≥ 0 ðPj Πj ¼ 1Þ, each with the Born prob-
ability pj ¼ trfρΠjg. We can express ρ and Πj in terms of

the Hermitian basis f1= ffiffiffiffi
D

p
;ΩjgD2−1

j¼1 such that trfΩjg ¼ 0

and trfΩjΩkg ¼ δj;k, so that we may denote the
(d ¼ D2 − 1)-dimensional r ¼ trfρΩg and qj ¼ trfΠjΩg.
This leads to FML ¼ N

P
M
j¼1 qjq

T
j=pML;j (N ≫ 1) and

gML ¼ P
M
j¼1 njqj=pML;j for the ML state estimator ρ̂ML

of ML probabilities pML;j ¼ trfρ̂MLΠjg. In concrete terms,
for case A, ρ̂ML is full rank, such that the CR Rλ ≈ Eλ;
whereas for case B, ρ̂ML is rank deficient andRλ ≈R0 ∩ E0

λ
is therefore approximately a truncated E0

λ (covariance
profile of the Gaussian expansion of L about r̂ML) by
the quantum-state space R0—the convex set of unit-trace
positive operators. The uniform ðdr0Þ is assumed.

FIG. 3. After expanding the likelihood L about r̂ML to a
Gaussian function centered at rc (cross) with its own isoGaussian
contours, a hyperplane (red solid line) is introduced in a manner
that its normal n is orthogonal to the isoGaussian curve at r̂ML to
form a cap.
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FIG. 4. Plots for Sλ and Cλ generated from the in-region
sampling technique on three-qubit systems (D ¼ 8), with a
rank-1 r̂ML, M ¼ 512 square-root measurement outcomes and
N=M ¼ 5000. The rapidly decreasing Sλ is a signature of
typically small regions of such datasets, which cannot be handled
with MC filtering. The results for Cλ obtained from the sampled
uλ generated with 200 recursive steps of Euler’s method to solve
Eq. (3) for Sλ. The flexibility of in-region sampling is demon-
strated by presenting graphs sampled according to both the
uniform and Gaussian distributions.
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To compare with the closed-form approximations in
Eqs. (6) and (7), we pick the l2 norm to measure the region
capacity SHS ≡ S2 ofR, which is equivalent to the Hilbert-
Schmidt (HS) distance for quantum states. We emphasize
that for sufficiently large N, all arguments leading to the
monotonicity of SD;λ still applies for case B as gML → 0.
Figures 4 and 5 showcase our in-region sampling theory.
The matches in both cases A and B between theory and hit-
and-run sampling are very good for moderate D, but are
expected to have some discrepancies for more complex
systems due to the more pronounced corners in ∂R0 [41].
Instead, accelerated hit and run can be used, the complex-
ities of which are analyzed in our companion article [36].
Conclusions.—In realistic multidimensional parameter

estimation problems, a sufficiently large dataset almost
exclusively results in extremely small Bayesian credible
regions relative to the entire parameter space. The conven-
tional practice of first doing Monte Carlo calculations to
sample the parameter space, followed by sample filtering
almost always fails to accurately construct such small error
regions. Our technique of in-region sampling developed in
this Letter is capable of constructing any such small regions
efficiently with perfect yield. In-region sampling is equiv-
alent to computing region averages that are efficient with a
wide range of numerical methods. The region-average
perspective of in-region sampling allows us to operationally
formulate an alternative concept of region capacity through
averaging any lp distance norm between two credible-
region points, for which, in the special case p ¼ 2, closed-
form approximation formulas to facilitate ultrafast analyti-
cal Bayesian error estimations with sufficiently large

datasets are readily available. Either way, efficient
Bayesian error certifications can now be carried out on
physical systems of varying complexity. For exceedingly
large quantum systems where Monte Carlo computations
start to become visibly taxing, these asymptotic formulas
can serve as large-scale approximate certifiers at least for
high credibility values.

The authors thank J. Shang for fruitful discussions, and
acknowledge financial support from the BK21 Plus
Program (21A20131111123) funded by the Ministry of
Education (MOE, Korea) and National Research
Foundation of Korea (NRF), and the framework of
international cooperation program managed by the NRF
(NRF-2018K2A9A1A06069933).

*ys_teo@snu.ac.kr
[1] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani,

Measurement of the Wigner Distribution and the Density
Matrix of a Light Mode Using Optical Homodyne Tomog-
raphy: Application to Squeezed States and the Vacuum,
Phys. Rev. Lett. 70, 1244 (1993).

[2] I. Chuang and M. Nielsen, Quantum Computation and
Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[3] J. Řeháček, Z. Hradil, E. Knill, and A. I. Lvovsky, Diluted
maximum-likelihood algorithm for quantum tomography,
Phys. Rev. A 75, 042108 (2007).

[4] Y. S. Teo, H. Zhu, B.-G. Englert, J. Řeháček, and Z. Hradil,
Quantum-State Reconstruction by Maximizing Likelihood
and Entropy, Phys. Rev. Lett. 107, 020404 (2011).

[5] H. Zhu, Quantum state estimation with informationally
overcomplete measurements, Phys. Rev. A 90, 012115
(2014).

[6] J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K.
Langford, T. C. Ralph, and A. G. White, Quantum Process
Tomography of a Controlled-Not Gate, Phys. Rev. Lett. 93,
080502 (2004).

[7] Y. S. Teo, B.-G. Englert, J. Řeháček, and Z. Hradil,
Adaptive schemes for incomplete quantum process tomog-
raphy, Phys. Rev. A 84, 062125 (2011).

[8] J. Fiurášek, Continuous-variable quantum process tomo-
graphy with squeezed-state probes, Phys. Rev. A 92,
022101 (2015).

[9] J. J. M. Varga, L. Rebón, Q. Pears Stefano, and C. Iemmi,
Characterizing d-dimensional quantum channels by means
of quantum process tomography, Opt. Lett. 43, 4398 (2018).

[10] C. M. Caves, Quantum-mechanical noise in an interfero-
meter, Phys. Rev. D 23, 1693 (1981).

[11] U. Dorner, R. Demkowicz-Dobrzański, B. J. Smith, J. S.
Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley,
Optimal Quantum Phase Estimation, Phys. Rev. Lett. 102,
040403 (2009).

[12] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C.
Monroe, and J. L. O’Brien, Quantum computers, Nature
(London) 464, 45 (2010).

10-3 10-2 10-1 100
0

0.02

0.04

0.06

0.08

0.001 0.01 0.1 0.98
0

0.05

0.1

(a) (b)

FIG. 5. The (magnified) per-D graphs of SHS versus C for
(a) case A and (b) case B for various D, with M ¼ D3 random
outcomes and N=M ¼ 500. The two-tuples in the legend of
(b) represent ðD; rankfr̂MLgÞ. The respective dashed curves
passing through the markers are calculated using Eqs. (6) and
(7). The magnification factors (top to bottom, left to right in
legend) for case A are 10, 50, and 150, and those for case B are
100, 200, 150, 10, 20, and 50.

PHYSICAL REVIEW LETTERS 123, 040602 (2019)

040602-5

https://doi.org/10.1103/PhysRevLett.70.1244
https://doi.org/10.1103/PhysRevA.75.042108
https://doi.org/10.1103/PhysRevLett.107.020404
https://doi.org/10.1103/PhysRevA.90.012115
https://doi.org/10.1103/PhysRevA.90.012115
https://doi.org/10.1103/PhysRevLett.93.080502
https://doi.org/10.1103/PhysRevLett.93.080502
https://doi.org/10.1103/PhysRevA.84.062125
https://doi.org/10.1103/PhysRevA.92.022101
https://doi.org/10.1103/PhysRevA.92.022101
https://doi.org/10.1364/OL.43.004398
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1103/PhysRevLett.102.040403
https://doi.org/10.1103/PhysRevLett.102.040403
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812


[13] R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołodyński,
Quantum limits in optical interferometry, Prog. Opt. 60, 345
(2015).

[14] E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards
fault-tolerant universal quantum computation, Nature
(London) 549, 172 (2017).

[15] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt,
Ch. Wunderlich, and W. K. Hensinger, Blueprint for a
microwave trapped ion quantum computer, Sci. Adv. 3,
e1601540 (2017).

[16] B. Efron and R. J. Tibshirani, An Introduction to the
Bootstrap (Chapman & Hall/CRC, New York, 1993).

[17] A. C. Davison and D. V. Hinkley, Bootstrap Methods and
their Application (Cambridge University Press, Cambridge,
England, 1997).

[18] D. Suess, Ł. Rudnicki, T. O Maciel, and D. Gross, Error
regions in quantum state tomography: Computational com-
plexity caused by geometry of quantum states, New J. Phys.
19, 093013 (2017).

[19] J. Shang, H. K. Ng, A. Sehrawat, X. Li, and B.-G. Englert,
Optimal error regions for quantum state estimation, New J.
Phys. 15, 123026 (2013).

[20] X. Li, J. Shang, H. K. Ng, and B.-G. Englert, Optimal error
intervals for properties of the quantum state, Phys. Rev. A
94, 062112 (2016).

[21] M. Christandl and R. Renner, Reliable Quantum State
Tomography, Phys. Rev. Lett. 109, 120403 (2012).

[22] R. Blume-Kohout, Robust error bars for quantum tomog-
raphy, arXiv:1202.5270.

[23] P. Faist and R. Renner, Practical and Reliable Error Bars in
Quantum Tomography, Phys. Rev. Lett. 117, 010404
(2016).

[24] J. Shang, Y.-L. Seah, H. K. Ng, D. J. Nott, and B.-G.
Englert, Monte carlo sampling from the quantum state
space. I, New J. Phys. 17, 043017 (2015).

[25] Y.-L. Seah, J. Shang, H. K. Ng, D. J. Nott, and B.-G.
Englert, Monte carlo sampling from the quantum state
space. II, New J. Phys. 17, 043018 (2015).

[26] Y. S. Teo, C. Oh, and H. Jeong, Bayesian error regions in
quantum estimation I: Analytical reasonings, New J. Phys.
20, 093009 (2018).

[27] C. Oh, Y. S. Teo, and H. Jeong, Bayesian error regions in
quantum estimation II: Analytical reasonings, New J. Phys.
20, 093010 (2018).

[28] C. J. P. Bélisle, H. E. Romeijn, and R. L. Smith, Hit-and-run
algorithms for generating multivariate distributions, Math.
Oper. Res. 18, 255 (1993).

[29] R. L. Smith, The hit-and-run sampler: A globally reaching
markov chain sampler for generating arbitrary multivariate
distributions, in WSC’96 Proceedings of the 28th
Conference on Winter Simulation (Coronado, California,
USA, 1996), edited by J. M. Charnes, D. J. Morrice, D. T.
Brunner, and J. J. Swain (IEEE Computer Society,
Washington, DC, USA, 1996), p. 260.

[30] L. Lovász and S. Vempala, Hit-and-run from a corner,
SIAM J. Comput. 35, 985 (2006).

[31] S. Kiatsupaibul, R. L. Smith, and Z. B. Zabinsky, An
analysis of a variation of hit-and-run for uniform sampling
from general regions, ACM Trans. Model. Comput. Simul.
21, 1 (2011).

[32] J. Aldrich, R.A. Fisher and the making of maximum
likelihood 1912–1922, Stat. Sci. 12, 162 (1997).

[33] Y. S. Teo, Introduction to Quantum-State Estimation (World
Scientific Publishing Co., Singapore, 2015).

[34] M. Evans, Measuring statistical evidence using relative
belief, Comput. Struct. Biotechnol. J. 14, 91 (2016).

[35] L. Al-Labadi, Z. Baskurt, and M. Evans, Statistical reason-
ing: Choosing and checking the ingredients, inferences
based on a measure of statistical evidence with some
applications, Entropy 20, 289 (2018).

[36] C. Oh, Y. S. Teo, and H. Jeong, Efficient Bayesian credible-
region certification for quantum-state tomography, Phys.
Rev. A 100, 012345 (2019).

[37] J. C. Butcher, Numerical Methods for Ordinary Differential
Equations (John Wiley & Sons, New York, 2003).

[38] P. Del Moral, A. Doucet, and A. Jasra, Sequential
monte carlo samplers, J. R. Stat. Soc. Ser. B 68, 411
(2006).

[39] J. Shang, Z. Zhang, and H. K. Ng, Superfast maximum-
likelihood reconstruction for quantum tomography, Phys.
Rev. A 95, 062336 (2017).

[40] L. Lovász, Hit-and-run mixes fast, Math. Program. Ser. A
86, 443 (1999).

[41] I. Bengtsson, S. Weis, and K. Życzkowski, Geometric
Methods in Physics. XXX Workshop 2011, edited by P.
Kielanowski, S. T. Ali, A. Odzijewicz, M. Schlichenmaier,
and T. Voronov, in Trends in Mathematics (Springer, Basel,
2013).

PHYSICAL REVIEW LETTERS 123, 040602 (2019)

040602-6

https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1038/nature23460
https://doi.org/10.1038/nature23460
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.1088/1367-2630/aa7ce9
https://doi.org/10.1088/1367-2630/aa7ce9
https://doi.org/10.1088/1367-2630/15/12/123026
https://doi.org/10.1088/1367-2630/15/12/123026
https://doi.org/10.1103/PhysRevA.94.062112
https://doi.org/10.1103/PhysRevA.94.062112
https://doi.org/10.1103/PhysRevLett.109.120403
http://arXiv.org/abs/1202.5270
https://doi.org/10.1103/PhysRevLett.117.010404
https://doi.org/10.1103/PhysRevLett.117.010404
https://doi.org/10.1088/1367-2630/17/4/043017
https://doi.org/10.1088/1367-2630/17/4/043018
https://doi.org/10.1088/1367-2630/aadac3
https://doi.org/10.1088/1367-2630/aadac3
https://doi.org/10.1088/1367-2630/aadac9
https://doi.org/10.1088/1367-2630/aadac9
https://doi.org/10.1287/moor.18.2.255
https://doi.org/10.1287/moor.18.2.255
https://doi.org/10.1137/S009753970544727X
https://doi.org/10.1145/1921598.1921600
https://doi.org/10.1145/1921598.1921600
https://doi.org/10.1214/ss/1030037906
https://doi.org/10.1016/j.csbj.2015.12.001
https://doi.org/10.3390/e20040289
https://doi.org/10.1103/PhysRevA.100.012345
https://doi.org/10.1103/PhysRevA.100.012345
https://doi.org/10.1111/j.1467-9868.2006.00553.x
https://doi.org/10.1111/j.1467-9868.2006.00553.x
https://doi.org/10.1103/PhysRevA.95.062336
https://doi.org/10.1103/PhysRevA.95.062336
https://doi.org/10.1007/s101070050099
https://doi.org/10.1007/s101070050099

